نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..
يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه هو مماس لدائرة واحدة.
يمكن رسم دائرة داخل المعين يمس محيطها أضلاع المعين الأربعة، وتكون:
ولأنّ المعين يتكون من أربعة أضلاع متساوية فإننا نستطيع أن نصيغ محيط المعين بالقانون التالي :
الحساب بمعرفة طولَي القُطرَين، وذلك عن طريق القانون التالي:
رجوع ما المراجع المعتمدة لتعريف المؤسسة التعليمية؟ لماذا مجموع مربعين لا يحلل؟ أسئلة ذات صلة
سعادة السفير / خالد بن حمود بن ناصر القحطاني السيرة الذاتية التواصل مع رئيس البعثة
المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في check here مجال الرياضيات وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.
أقطار المعين عمودية على بعضها وتصنع أربعة مثلثات قائمة من نقطة التقاطع.
للمعين زاويتين حادتين و اخريتين منفرجتين، إلا إن كانت إحدى الزوايا قائمة، عندئذٍ يكون الشكل مربعاً.
تسجيل الدخول نسيت كلمة المرور؟ مستحدم جديد؟ انشئ حساب هذا الموقع محمي بواسطة recaptcha ، تطبّق شروط الخدمة و سياسة الخصوصية لجوجل تسجيل حساب جديد
المعين عبارة عن شكل هندسي ثنائي الأبعاد (طول و عرض)، يتكون من أربع أضلاع (كالمربع و المستطيل).
متساوي الأقطار · متعامد الأقطار [الإنجليزية] · دائري (ثنائي المركز) · مماسي (مماسي خارجي) · لامبرت · ساتشري
ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:
كلاهما أشكال رباعية؛ فالمربع هو شكل رباعي، والمعين هو أيضًا شكل رباعي الأضلاع.